
Experience Report: How Effective Is Automated
Program Repair for Industrial Software?

Kunihiro Noda, Yusuke Nemoto, Keisuke Hotta, Hideo Tanida, and Shinji Kikuchi
FUJITSU LABORATORIES LTD., Japan

{noda.kunihiro, y-nemoto, hotta-keisuke, tanida.hideo, skikuchi}@fujitsu.com

Abstract—Recent advances in automated program repair
(APR) have widely caught the attention of industrial developers
as a way of reducing debugging costs. While hundreds of studies
have evaluated the effectiveness of APR on open-source software,
industrial case studies on APR have been rarely reported; it is
still unclear whether APR can work well for industrial software.

This paper reports our experience applying a state-of-the-art
APR technique, ELIXIR, to large industrial software consisting
of 150+ Java projects and 13 years of development histories.
It provides lessons learned and recommendations regarding
obstacles to the industrial use of current APR: low recall (7.7%),
lack of bug-exposing tests (90%), low success rate (10%), among
others. We also report the preliminary results of our ongoing
improvement of ELIXIR. With some simple enhancements, the
success rate of repair has been greatly improved by up to 40%.

Index Terms—automated program repair, industrial experi-
ence report, practical performance

I. INTRODUCTION

Automated program repair (APR) has been drawing a great
deal of attention in the last decade. A large body of work
has led to various bug-fixing patch generation techniques [1];
quite a few real bugs can be fixed using APR tools [2].
While hundreds of existing APR studies have evaluated their
techniques with real bugs collected from open-source software
(OSS) (e.g., Defects4J [3]), experience reports on industrial
applications of APR are scarce [4].

The only APR success story in industry is the case of Face-
book, where two APR tools, SapFix [5] and Getafix [6], are
integrated into their development workflow. The studies [5],
[6] reported that the tools successfully repaired over 40–50%
of the null-related bugs/warnings detected by automatically
designed test cases or their static code checker. Although
this performance is attractive, only null value-related repair
is evaluated in the actual development workflow.

To the best of our knowledge, only Naitou et al. reported
an industrial case study of more general repair techniques [7]
(their targets include various kinds of bugs). They applied two
general APR tools [8], [9] to real bugs; however, it resulted
in only 1 correct fix (out of 9 bugs). Thus, it is still unclear
whether APR tools can work effectively in industry, and more
industrial case studies are needed.

This paper presents our industrial experience with applying
a state-of-the-art APR tool, ELIXIR [10]. It discusses the actual
performance of current APR measured on large industrial
software, lessons learned, and the preliminary results of our
ongoing improvement of ELIXIR. We analyze large industrial

software, consisting of over 150 Java projects (3.5 MLOC),
and 6K bugs from 13 years of development histories.

Our industrial case study reveals some challenging problems
to address: low repair recall (7.7%), lack of bug-exposing test
cases (90% of the bugs), poor success rate (10%), and others.
This indicates APR tools might have lower performance and
some infeasibility, compared with those in the literature using
OSS datasets. It also emphasizes the importance of further
improvement of practical aspects of APR techniques.

Also, some enhancements are implemented in ELIXIR; the
repair success rate is greatly increased by up to 40%, while
our first trial with sampled 20 bugs results in only 2 (10%)
correct fixes. We consider there is much room for practical
improvement of APR. We hope that our experience contributes
to future APR research and industrial applications.

The major contributions of this paper are as follows:
• An industrial experience report on an APR tool targeting

various (nonspecific) types of bugs, based on a much
larger industrial dataset than the existing report [7];

• Lessons and recommendations from our case study, which
reveals poor-performance/infeasibility of current APR;

• Preliminary results of our ongoing enhancements to
ELIXIR, which greatly improve repair performance.

II. BACKGROUND

A. State-of-The-Art APR Tools and Performance

APR tools first localize bug locations, then generate candi-
date patches for bug fixing. Finally, they output the patches
that pass all test suites (called plausible). The types of APR
approaches are diverse, ranging from search based [11] and
semantics driven [12] to neural machine translation based [13].

Recently, Liu et al. provided a comparison report on the
performance of 17 APR tools [14]. Of those, the top four state-
of-the-art APR tools with the best performance are shown in
Table I. They could repair 21–34 bugs with 50–84% precision
among 200+ bugs in Defects4J [3]. As mentioned in Section I,
while many studies evaluated APR tools on OSS datasets,
industrial ones have been rarely reported.

B. ELIXIR: Effective Object-Oriented Program Repair

In our industrial case study, we utilize ELIXIR [10], one of
the best performing state-of-the-art APR tools listed in Table I.

ELIXIR is a fix patterns-based generate-and-validate (G&V)
repair tool. Given a buggy program and test suites, it first

978-1-7281-5143-4/20 c© 2020 IEEE SANER 2020, London, ON, Canada
Industry Track

Accepted for publication by IEEE. c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

612



TABLE I
PERFORMANCE OF THE STATE-OF-THE-ART APR TOOLS.

Project TBar [14] SimFix [15] ELIXIR [10] CapGen [16]

Chart 9/14 4/8 4/7 4/4
Lang 5/14 9/13 8/12 5/5
Math 19/36 14/26 12/19 12/16
Time 1/3 1/1 2/3 0/0
Total 34/67 28/48 26/41 21/25

Precision [%] 50.7 58.3 63.4 84.0

Each cell shows #correct/#plausible patches generated. This table is excerpted
from the paper by Liu et al. [14]. Only APR tools that could repair over 20 bugs
in Defects4J are shown here. Closure and Mockito projects are excluded because
ELIXIR and CapGen have not been evaluated on the projects.

localizes the buggy location via spectrum-based fault local-
ization with Ochiai scores, which is a widely used approach
in the literature. Then, it generates bug-fixing patches based on
several common fix patterns extracted from existing human-
written patches (e.g., inserting a null checker, tightening an if
condition, etc.). Finally, the first plausible patch, which passes
all the existing test cases, is selected as the output.

One key feature of ELIXIR is its repair strategy regarding
method invocations (MIs). ELIXIR has rich repair templates
(fix patterns) regarding MIs, which are rarely implemented
in other APR tools. This greatly contributes to the repair
performance for object-oriented programs (OOPs) because bug
fixes comprising changes of MIs are very prevalent (over 30–
40% of all the one-line bug fixes) in OOPs [10].

A major baneful effect of leveraging rich fix patterns is to
cause search space explosion during patch syntheses. Allowing
mutation of MIs exponentially increases the number of possi-
ble combinations of repair ingredients, making APR infeasible.
To deal with that, ELIXIR utilizes a machine-learned model for
ranking the candidate patches well. Given the context code of
the buggy location and bug reports, the model predicts which
patch is more suitable for the location based on several features
(e.g., frequencies of identifiers used, token similarity, etc.).

III. INDUSTRIAL CASE STUDY OF APR

A. Research Questions and Motivations
RQ1: How prevalent are single-statement bug fixes in
industrial software development?

First, we investigate the prevalence of single-statement bug
fixes. The primary objective of leveraging APR is to reduce
debugging costs; thus, we would like to know to what extent
APR can (theoretically) contribute to cost savings.

Most state-of-the-art APR tools target single-statement
bugs [17]. Although a few tools are capable of fixing multi-
hunk bugs [12], [17], the number (classes) of such repairable
multi-hunk bugs are very limited. Hence, we investigate the
prevalence of single-statement bug fixes in industrial develop-
ment, which provides an approximate answer to RQ1.

RQ2: How many industrial bugs does ELIXIR fix?

The APR success rate is not sufficiently high even for OSS
datasets due to the lack of fix patterns, patch overfitting, and
other factors. As described in Section I, the actual performance
of current APR in industry is still unclear. Thus, we would like

to investigate how many of our industrial bugs are fixed by
state-of-the-art APR technology.

B. Subject Software and Data Analyzed

The subject of this case study is large industrial software.
It consists of 158 Java projects, 3.5MLOC production code,
and 0.5MLOC test code at the latest revision. It utilizes
OracleDB for recording business data, JSP & Tomcat for its
web interface, and JUnit & DbUnit as testing frameworks.

Apart from the software itself, commit and issue histories
are stored in Subversion repositories and Mantis. We analyze
over 13 years of large development histories that include 10
individual source repositories, 176K commits, and 20K issues.

C. Case Study Procedure

RQ1: Prevalence of single-statement bug fixes
The Mantis contains multiple kinds and statuses of issues:

feature requests, (un)resolved bugs, etc. We first retrieve issues
of resolved bugs. Then, we relate each of the issues to bug-
fixing commits based on the issue ID in commit messages.
Afterward, we manually examine each commit diff to identify
whether the change in the commit is a single-statement fix.
Note that we consider a multiline change as a single-statement
fix if it can be transformed into a semantically-equal single-
line change (e.g., Listing 1 can be transformed into Listing 2
by inlining and ignoring a comment). As such, we count the
number of single-statement bug fixes in the history.

import java.util.Set;
+ import java.util.TreeSet;
...
- return db.getBooks();
+ // ensure the book collection is sorted
+ Set<Book> books = db.getBooks();
+ return new TreeSet<>(books);

Listing 1. Multiline fix.

import java.util.Set;
...
- return store.getAllBooks();
+ return new java.util.TreeSet<>(db.getBooks());

Listing 2. Single-line fix that is semantically equal to Listing 1.

RQ2: Practical repair performance of ELIXIR
We apply ELIXIR to the latest 20 real bugs among all the

single-statement bug fixes identified at RQ1, and investigate
how many of them are correctly fixed. Note we skip bugs that
are difficult to expose by test code (e.g., bugs of GUI layouts).
We also evaluate the individual performance of ELIXIR’s sub-
components, fault localization and patch generation, meaning
where each buggy line is ranked and how many of the bugs
are fixed under perfect fault localization results.

As for the ELIXIR parameters, up to the top 200 suspicious
lines are examined as repair targets for each bug, and up to the
top 100 candidate patches are validated for each fix pattern.
Assuming the use case of overnight batch processing, we set
the timeout of a repair trial for each bug to 12 hours.

D. Results and Discussion

RQ1: Prevalence of single-statement bug fixes
The result of investigating the issue history is as follows:

6,551 bugs are marked as resolved in Mantis;
5,857 bugs each are related to at least one bug-fixing commit;

613



5,284 bugs each require a fix of at least one production file;
1,439 bugs each require a fix of only one production *.java;

406 bugs each require a single-statement fix.
Lesson 1: Low Recall. As shown in the above result,

only 7.7% (406/5,284) of the bugs involving production-file
changes are single-statement fixes. Compared with the fact
that Defects4J, which is used in most of the existing studies,
contains a large number of single-line fixes (24.8%; 98/395
bugs), the ratio of 7.7% is quite small. Single-statement bugs
are not prevalent in an actual industrial development history.
This means that major state-of-the-art APR tools can repair
a very small portion of all the bugs; the actual recall of major
APR tools will be < 7.7%.

The current main streams of APR research are to prevent
patch-overfitting and better rank candidate patches; however,
because the primary objective of integrating APR into
software development is to lower debugging costs, future
research should emphasize improving recall (as well as
precision). It is also worth noting that production files contain
other file types (*.properties, *.js, etc.) in addition to *.java
files; inventing repair techniques for buggy resource files is
also an important topic.

RQ2: Practical repair performance of ELIXIR
We evaluated the repair performance of ELIXIR by applying

it to the latest 20 single-statement bugs identified at RQ1.
Lesson 2: Lack of Bug-Exposing Test Cases. First, the

most critical obstacle to applying ELIXIR is the lack of bug-
exposing test cases: only 2 of the 20 bugs are exposed by
the existing test methods. A possible reason is that, because
writing test code for complex business logic or UI-related
scenarios is time-consuming and cumbersome, manual testing
tends to be preferred because of tight cost and delivery
constraints. This means test-driven repair, the major approach
in the literature, is infeasible for 90% of all the bugs.

The major APR tools assume that there are bug-exposing
test cases. This assumption is, however, often invalid in
actual industrial software development. A recent study [18]
also reported that such an assumption is invalid for real bugs
from OSS: in a realistic situation, 92% of all the bugs in
Defects4J are not exposed by any test cases.

To integrate APR into industrial software development,
we might need to provide developers with guidelines that
recommend writing a few bug-exposing test cases together
with registering a bug report. Also, to resolve or mitigate the
issue, it is important to approach automated repair from a
different angle; for example, bug report-driven repair [18] or
static analysis-based repair [19].

In this case study, we manually add 1–10 test methods
(3 methods on average) for each bug that has no bug-exposing
test cases. We write new test cases so that the C0 coverage of
the method enclosing each bug is close to 100%.

Table II shows the repair performance in this case study.
With real (resp. perfect) fault localization results, ELIXIR
generates 6 (resp. 5) plausible patches, and only 2 of them
correctly fix the bugs (ELIXIR-R/P columns in Table II).

TABLE II
RESULTS OF APPLYING ELIXIR TO INDUSTRIAL BUGS.

Test Time ELIXIR ELIXIR+

Issue ID P [s] EC [s] WE Bug Type R P R P

7498 6 5 175 W-Meth N N I C
7826 3,720 119 26 W-Arg I N C C
7852 16 1 2 M-NG N N C C
8169 277 110 13 W-Arg T N C C
8183 3,720 804 3 W-Meth C C C C
8384 500 196 22 M-Meth E N T N
9037 231 92 127 M-Meth T N T N

12160 6 1 21 W-Meth I N I N
18321 72 2 1 M-Meth E N E N
18326 313 2 7 W-Cond T N E N
18465 244 52 78 W-Meth T N T I
18469 244 28 110 W-Meth T I T I
19065 6 2 8 W-Meth T N C C
19093 4 4 47 M-Meth I N I N
19179 37 13 37 M-Meth T N T N
19345 5 2 3 W-Cond I I C C
19598 48 38 3 W-Arg N N C C
19902 9 9 140 M-Meth T N E N
20003 920 61 14 W-Meth C C C C
20038 error 1329 6 M-NG E I T C

Average 546 144 42 #correct 2 2 8 10
Median 72 21 18 #incorrect 4 3 3 2

#timeout 8 0 6 0
#no 3 15 0 8

#error 3 0 3 0
Correct [%] 10 10 40 50

Precision [%] 33 40 73 83

P shows the test time of the project enclosing the buggy line while EC shows the
test time of bug-exposing test classes for each bug.
WE shows wasted effort calculated by H + S/2. H (resp. S) is #lines whose

suspicious scores are higher than (resp. the same as) that of the buggy line.
Bug Type: W- and M- mean wrong and missing, resp.; Meth, Arg, NG, and Cond mean

method-call, arguments, null-guard, and condition, resp.
Four of the columns from the right shows the results of patch generation. R (resp. P)

shows patch generation results with real (resp. perfect) fault localization results. C, I,
N, T, and E mean correct, incorrect, no (patches), timeout, and error, resp.
Correct (resp. Precision) is calculated by #correct/#issues (resp. #correct/#plausible).

Lesson 3: Insufficient Fix Patterns, Ingredients, and
Ranking. Only 2 bugs are correctly fixed by ELIXIR. The rest
of the 18 unrepaired bugs are classified into the three types:

(A) Lack of fix patterns (repair template): 2 of the 18 bugs
cannot be repaired by ELIXIR because it has no repair tem-
plates corresponding to the bugs.

(B) Insufficient repair ingredients: 2 of the 18 bugs cannot
be repaired because some specific literals (e.g., ‘2’ or ‘4’) are
required to fix them. ELIXIR extracts literals only in scope as
repair ingredients, and those specific ones are out of scope.

(C) Insufficient performance of patch ranking strategy: The
rest of the 14 unrepaired bugs are classified into this type.
ELIXIR synthesizes candidate patches using ingredients of
accessible literals, variables, and methods. Since ELIXIR has
rich MI repair templates (described in Section II-B), a large
number of candidate patches are generated. Theoretically,
ELIXIR can generate correct patches for the 14 bugs; however,
those correct ones are difficult to rank in the top 100 due to
the overwhelming number of candidates, even though ELIXIR
has a neat machine-learned model for ranking them well.

The competitive repair performance of ELIXIR has been
demonstrated in the literature for OSS datasets; however,
the practical performance on our industrial bug datasets is
quite low. This indicates the current ELIXIR repair algorithm
might strongly overfit the OSS benchmarks. A recent study

614



also reported an issue that repair tools overfit Defects4J [2].
Future research should seek and examine many more
varied types of real bugs; sophisticating fix patterns, repair
ingredients, and ranking strategy based on insights from
unseen bugs is required to improve the practicality of APR.

Lesson 4: Importance of Test Order and Selection. G&V
repair tools require many times of test executions for fault
localization and patch validation. As shown in Table II, while
the test time of each bug-exposing class ranges from a few
sec. to ≈ 20 min., that of each enclosing Java project ranges
from 4 sec. to ≈ 1 hour; the test time of each enclosing project
is much greater than that of each bug-exposing class.

Compared with OSS datasets, the test time of the industrial
software tends to be much longer. While it needs 13.5 min.
to generate a patch on average for OSS datasets [2], ELIXIR
requires 2–3.5 hours to generate a correct patch for our dataset.
One of the major reasons for that is the heavy overhead of DB
accesses. Enterprise applications often involve interactions
with outer environments (e.g., DB, network, etc.), while exist-
ing OSS datasets do not tend to have such properties. Each test
that asserts business logic involving such interactions tends to
be time-consuming because it needs, for example, connection
establishment or data en(de)coding. Preparing stubs or mock
objects could mitigate this issue; however, it is not always
practically possible due to time or cost limitations (i.e., writing
stubs or mock objects for several complicated business objects
requires a certain amount of manual effort).

In industrial settings, if APR tools simply run entire test
cases every time of fault localization and patch validation,
it easily exceeds the time budget (c.f., it is usually set to
1.5–3 hours in the literature). Thus, it needs to carefully
select (or design) which test cases should be executed in
which order. In a debugging phase, developers usually perform
impact analysis and select which tests should be executed.
APR tools should also perform similar analysis, select a proper
subset of test cases, and decide an execution order thereof. For
example, first, a candidate patch should be validated only with
bug-exposing test classes; then, if those tests do not fail, the
patch should be additionally checked with the other test cases.

Other Practical Issues and Concerns. Lastly, we list other
practical issues and concerns encountered during the case
study and discussions with developers, which would be seeds
for future APR research.

(A) Few Opportunities: G&V repair tools are intended to be
integrated into a continuous integration server due to their long
execution time. However, developers tend to commit (push)
their code after ensuring no test failure; there might be few or
no opportunities to trigger the APR tools.

(B) Slow Response: Tight schedules are often required in
industrial software development. The time budget of several
hours for each bug seems to be too long; it might be difficult
to integrate an APR tool into a development process involving
many daily code changes and commits.

(C) Difficulty of Review: Reviewing the patches generated
could be time-consuming for developers because no explana-

tions and comments are attached, while human-written patches
often include them.

(D) Multiple Bugs: In actual software development, multiple
bugs often exist simultaneously, which is not handled by
current major APR tools.

(E) Undesirable Side Effects: Random mutations during
repair can cause dangerous unintended behavior: e.g., confi-
dential information might be sent to public servers by mutating
variables of server addresses; StackOverflowError caused by
mutations could prevent graceful exit, which results in a freeze
(an illegal state) of DB management systems.

IV. PRELIMINARY RESULTS OF IMPROVING ELIXIR

This section describes the preliminary result of our ongoing
improvement of ELIXIR. To mitigate the issue in lesson 3,
we are implementing an enhanced version of ELIXIR, called
ELIXIR+. Current enhancements are threefold: introducing two
repair templates and redundancy-based synthesis strategy.

First, we add a repair template to ELIXIR for lesson 3-(A).
Both the 2 unrepaired bugs in lesson 3-(A) cause null pointer
exceptions (NPEs). Although ELIXIR has a repair template for
null-guard insertion, it checks nullness only for variables. The
NPEs of the bugs occur because expressions (6= variables) can
be null (e.g., return values of MIs); they cannot be fixed by
ELIXIR. Thus, we add a new repair template that inserts null
guards for all the expressions in the buggy statement.

The rest of our enhancements are based on the following
observations: (1) corrections of the buggy lines often include
(parts of) code expressions in other locations in the software
(50%; 10/20 bugs); (2) correct code tends to slightly deviate
from the buggy code (i.e., edit distance tends to be small).
Observation (1) corresponds to the redundancy assumption
validated in the literature [20]. It is worth noting that most of
those redundant expressions are domain-specific to the subject
software; they cannot be obtained from other software.

To mitigate the issues in lessons 3-(B)(C), we introduce a
redundancy-based synthesis strategy (RSS). While the original
strategy of ELIXIR synthesizes candidate patches with ingre-
dients of accessible literals, variables, and methods, RSS uses
as ingredients all the expressions extracted from the method
enclosing the buggy statement (including those out of scope).

In the bug-fixing example below, the ingredients of RSS
are only the existing expressions in the enclosing method
such as service.isActive() and query.contains(...), while those
of the original strategy are all accessible literals, variables,
and methods (including all the accessible fields and methods
of query, service, etc.). Thus, RSS is much more likely to
generate the correct patch than the original strategy. It can be
considered RSS leverages the knowledge about which method
is more likely to be called for the receiver object service.
- if (query != null) {
+ if (query != null && query.contains("XX-Product")) {

...
}
... // tens of lines are here
if (service.isActive()) {
...
if (query.contains("XX-Product") && hasProfile) {
...

Listing 3. An example of bug fixing.

615



In RSS, the patches generated are ranked based on LCS
(longest common subsequence) length between original and
patched code (from largest to smallest). ELIXIR+ leverages
two synthesis strategies: the original one of ELIXIR and RSS.
The final list of candidate patches is built by interleaving two
lists of patches individually generated from the two synthesis
strategies.

Also, we introduce another repair template that simply
swaps method arguments (among the same/different expres-
sion(s)) in the buggy statement for the issue in lesson 3-(C).
This template likely generates candidate patches similar to the
original code when mutating method invocations.

The result of the above enhancements is shown in Table II
(ELIXIR+ column). Although our enhancements are simple,
the performance improvement is remarkable. With the real
fault localization results, ELIXIR+ correctly repairs 8/20 (40%)
bugs, whereas that of ELIXIR is only 2/20 (10%). With the
perfect fault localization results, the success rate rises from
2/20 (10%) to 10/20 (50%).

We consider that the redundancy assumption holds also
in industrial software, and thereby redundancy-based patch
generation produces a better result. In addition, widening the
variety of repair templates will well contribute to the repair
performance.

V. RELATED WORK

APR is a major research topic in the software engineering
area; hundreds of papers on APR have been published [1].
While many studies reported on applying APR tools to OSS,
industrial experience reports on APR are very few [4].

Two APR tools, SapFix [5] and Getafix [6], are integrated
into the Facebook development workflow. SapFix is an end-
to-end repair tool: first, it detects latent NPEs with tests auto-
matically designed by Sapienz; then, it tries to repair them via
mutation or fix templates, resulting in ≈ 50% correct fixes [5].
Getafix is a repair tool that learns fix patterns from bug-fixing
histories. Unlike G&V repair, it utilizes the static analyzer,
Infer, for latent bug detection and patch validation. Over 40–
60% of null-related bugs are correctly fixed in Facebook [6].

Naitou et al. [7] reported an industrial application of two
general APR tools, ASTOR [8] and NOPOL [9]. Of 327
industrial bugs to investigate, they applied the APR tools to 9
bugs, resulting in only 1 correct fix. They also reported some
barriers to the industrial use of APR; for instance, only a small
portion of the bugs can be repaired by program-code mutation
(i.e., other types of files need changing). It indicates the
difficulty of applying general APR tools to industrial software
and the immatureness of current APR techniques.

Apart from industrial reports, current main streams of
APR research are to prevent patch overfitting and better rank
candidate patches. A major approach to overfitting prevention
is to leverage test case generation [21]. As for better ranking,
the types of approaches are diverse: e.g., machine learning-
based [10], similarity-based [15], [16], etc.

A recent study reported that the issue of lacking bug-
exposing test cases exists also in OSS [14]. To deal with that,

new APR approaches from different angles are required, such
as bug report-driven [14], static analysis-based [19], etc.

VI. CONCLUSION

This paper reported our experience applying ELIXIR, a
state-of-the-art APR tool, to large industrial software. Our case
study revealed several critical obstacles to the industrial use of
APR: low recall, lack of bug-exposing tests, and poor success
rate, among others. Current APR techniques still have several
immature aspects for practical industrial deployment; it needs
further improvement of the practicality of APR techniques.

We also presented the preliminary results of our ongoing im-
provement efforts. ELIXIR+, an enhanced version of ELIXIR,
additionally leverages new repair templates and a redundancy-
based synthesis strategy based on the insights from our first
trial. The enhancements are simple but contribute substantially
to repair performance, increasing the success rate of repair
from 10% up to 40%.

We hope this report contributes to future research in the
APR community.

REFERENCES

[1] L. Gazzola et al., “Automatic software repair: A survey,” IEEE Trans.
Softw. Eng., vol. 45, no. 1, pp. 34–67, 2019.

[2] T. Durieux et al., “Empirical review of Java program repair tools: A
large-scale experiment on 2,141 bugs and 23,551 repair attempts,” in
FSE, 2019, pp. 302–313.

[3] R. Just et al., “Defects4J: A database of existing faults to enable
controlled testing studies for Java programs,” in ISSTA, 2014, pp. 437–
440.

[4] M. Monperrus, “The living review on automated program repair,”
HAL/archives-ouvertes.fr, Tech. Rep. hal-01956501, 2018.

[5] A. Marginean et al., “Sapfix: Automated end-to-end repair at scale,” in
ICSE-SEIP, 2019, pp. 269–278.

[6] J. Bader et al., “Getafix: Learning to fix bugs automatically,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, pp. 159:1–159:27, Oct. 2019.

[7] K. Naitou et al., “Toward introducing automated program repair tech-
niques to industrial software development,” in ICPC, 2018, pp. 332–335.

[8] M. Martinez and M. Monperrus, “ASTOR: A program repair library for
Java (demo),” in ISSTA, 2016, pp. 441–444.

[9] J. Xuan et al., “Nopol: Automatic repair of conditional statement bugs
in Java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1, pp. 34–55,
Jan. 2017.

[10] R. K. Saha et al., “Elixir: Effective object-oriented program repair,” in
ASE, 2017, pp. 648–659.

[11] C. Le Goues et al., “A systematic study of automated program repair:
Fixing 55 out of 105 bugs for $8 each,” in ICSE, 2012, pp. 3–13.

[12] S. Mechtaev et al., “Angelix: Scalable multiline program patch synthesis
via symbolic analysis,” in ICSE, 2016, pp. 691–701.

[13] Z. Chen et al., “SEQUENCER: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Trans. Softw. Eng., 2019.

[14] K. Liu et al., “Tbar: Revisiting template-based automated program
repair,” in ISSTA, 2019, pp. 31–42.

[15] J. Jiang et al., “Shaping program repair space with existing patches and
similar code,” in ISSTA, 2018, pp. 298–309.

[16] M. Wen et al., “Context-aware patch generation for better automated
program repair,” in ICSE, 2018, pp. 1–11.

[17] S. Saha et al., “Harnessing evolution for multi-hunk program repair,” in
ICSE, 2019, pp. 13–24.

[18] A. Koyuncu et al., “iFixR: Bug report driven program repair,” in FSE,
2019, pp. 314–325.

[19] R. Bavishi et al., “Phoenix: Automated data-driven synthesis of repairs
for static analysis violations,” in FSE, 2019, pp. 613–624.

[20] E. T. Barr et al., “The plastic surgery hypothesis,” in FSE, 2014, pp.
306–317.

[21] Z. Yu et al., “Alleviating patch overfitting with automatic test generation:
a study of feasibility and effectiveness for the Nopol repair system,”
Empirical Software Engineering, vol. 24, no. 1, pp. 33–67, Feb 2019.

616


	Introduction
	Background
	State-of-The-Art APR Tools and Performance
	Elixir: Effective Object-Oriented Program Repair

	Industrial Case Study of APR
	Research Questions and Motivations
	Subject Software and Data Analyzed
	Case Study Procedure
	Results and Discussion

	Preliminary Results of Improving Elixir
	Related Work
	Conclusion
	References

